
Web NDL Authorities SPARQL API Speci�cation

National Diet Library of Japan

Created: March 31th, 2014

Revised: March 31th, 2018; March 31th, 2023

Contents

1 The Outline of the Web NDLA SPARQL API 2

1.1 SPARQL query API . 2
1.2 Authority Record RDF Graph and SPARQL . 3

2 SPARQL RDF Query Language 7

2.1 Basic Syntax . 7
2.2 Groups of Graph Patterns . 9
2.3 Optional Pattern Matching . 10
2.4 UNION for Matching Alternatives . 12
2.5 RDF Dataset and Graph . 13
2.6 Restricting Values with FILTER . 14
2.7 Solution Sequences and Modi�ers . 18
2.8 Query Forms and Results . 20

3 API Parameters and Result Formats 24

3.1 XML Result Format . 24
3.2 JSON Result Format . 25

4 RDF Graph of the Authority Records and Applied Examples 26

4.1 Authority Records of Personal Name, Family Name and Corporate Name 26
4.2 Authority Records of Geographical Name, Uniform Title, Subject Heading and Sub-

ject Subdivision . 28

5 SPARQL 1.1 31

5.1 Request URI and parameters . 31
5.2 New Functionalities of SPARQL 1.1, and Sample Queries 31
5.3 The Di�erences between SPARQL 1.1 endpoint and exsiting ARC2 (1.0 endpoint) . 34

6 Revision History 35

1

1 The Outline of the Web NDLA SPARQL API

The Web NDL Authorities (Web NDLA) stores the name authority information as RDF (Resource
Description Framework) data. RDF data can be queried by SPARQL (SPARQL RDF Query Lan-
guage), and the Web NDLA has the function to respond the SPARQL query.

This document describes the RDF data structure of the Web NDLA, and explains how to query
it with SPARQL.

1.1 SPARQL query API

1.1.1 Basic SPARQL Query

A user can search any authority data in Web NDLA with SPARQL Query. The next example is
a query to �nd the authority URI of the subject heading "図書館" (library).

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE {

?subj rdfs:label "図書館"
}

The search result will be returned by sending this query to NDLA though API using the following
procedure.

1.1.2 Request URI and Parameters

A SPARQL query to the Web NDLA is to be requested against the following URI (endpoint).

http://id.ndl.go.jp/auth/ndla

There are two parameters as shown in Table1.

Table 1: Web NDLA API Parameters
parameter value
query URL encoded SPARQL query string
output result format (xml | json | turtle*) *turtle is for DESCRIBE, CONSTRUCT only

A request to get results as XML is of the following form.

http://id.ndl.go.jp/auth/ndla?query={URL encoded query}&output=xml

With the previous query being URL encoded, the entire request will be the following.

http://id.ndl.go.jp/auth/ndla?query=PREFIX+rdfs%3A+%3Chttp%3A%2F%2Fwww.w3.org%2F
2000%2F01%2Frdf-schema%23%3E%0D%0ASELECT+*+WHERE+%7B%0D%0A%09%3Fsubj+rdfs%3Alabel

2

+%22%E5%9B%B3%E6%9B%B8%E9%A4%A8%22%0D%0A%7D%0D%0A&output=xml

There are four SPARQL query forms: SELECT to �nd values, ASK to see if the matching data
exists, CONSTRUCT to create new RDF graphs with the matching value, and DESCRIBE to obtain an
explanation graph for resources.

For DESCRIBE or CONSTRUCT queries, value turtle can be speci�ed for the result format parameter
(output).

SPARQL query will be discussed in chapter 2, and four query forms will be explained in 2.8.

1.1.3 Result Format

As the result of a request, a list of bound variables (for SELECT), an RDF graph (for DESCRIBE and
CONSTRUCT) or a truth value (for ASK) will be returned, according to the type of the query.

The format of the binding list and the truth value is varied by the output parameter as shown
in Table 2.

Table 2: Web NDLA API output Parameters

output parameter format
xml XML as specified in SPARQL Query Results XML Format
json JSON as specified in SPARQL 1.1 Query Results JSON Format

The resulting XML for the previous query (output=xml) will be:

<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
<variable name="subj"/>

</head>
<results>
<result>
<binding name="subj">

<uri>http://id.ndl.go.jp/auth/ndlsh/00573385</uri>
</binding>

</result>
</results>

</sparql>

The detail of XML format and JSON format will be shown in 3.1 and 3.2 respectively.
The result format of RDF graph is shown in Table 3.

1.2 Authority Record RDF Graph and SPARQL

Authority records in the Web NDLA are expressed as RDF graphs. A SPARQL query is constructed
with "patterns to �nd in a graph". This section explains the outline of how to write patterns in an
RDF graph as SPARQL query.

3

Table 3: Web NDLA API RDF Graph Formats

output parameter Format
xml RDF/XML format
json RDF/JSON format
turtle Turtle format

1.2.1 The RDF Graph of the Authority Record

RDF describes a basic information in a way that a thing (e.g. an authority record = subject) has a
property or characteristic (predicate) which has a value (object). This subject - predicate - object
relation is called an RDF Triple. Each element of a triple is named (identi�ed) by a URI1. An
object can be literal instead of a URI.

A set of RDF triples is called an RDF Graph. In an RDF graph, triples that share the same
URI is connected, resulting a large network of information (Figure 1)2.

Figure 1: Triples are connected via a common URI.

Authority records in the Web NDLA are represented by RDF. Each authority record is identi�ed
by a URI, and the relationship between records (e.g. broader or alternative term) is described as
RDF triple. Thus authority records are connected, and form a large RDF graph (Figure 2).

Moreover, because the Web NDLA references external authorities such as VIAF or LC authori-
ties, the RDF graph of the Web NDLA goes beyond the National Diet Library of Japan, and becomes
a part of LOD (Linked Open Data) cloud (The whole model of an authority record will be discussed
in chapter 4).

1Actually, it is IRI (Internationalized Resource Identifier, the extension of URI so that non ASCII characters can
be appear in an identifier string) that is used for naming. This document uses more familiar URI as the term of
identifier, but it should be read as IRI.

2Some nodes might be blank nodes without URIs, which are connected via internal blank node IDs.

4

Figure 2: The subject URI of ”セマンティックウェブ” (Semantic Web, http://…01017771) is also the object of
skos:narrower property of ”インターネット”(Internet, http://…00841024) , hence these triples are connected.

1.2.2 Partial Graph Pattern and Search

With SPARQL, a user will write a partial pattern of an RDF graph that contains unknown data
(variables), �nd values that match this pattern from the target graph, and retrieve the result as sets
of values.

For example, in order to �nd authorities whose label (rdfs:label) are the narrower terms
(skos:narrower) of "インターネット", the partial graph pattern will be as Figure 3.

Figure 3: A partial graph pattern where the variables ’subj2’ and ’label’ represent the narrower term and
its label.

The search will �nd the matching sub graphs from the Web NDLA, and returns values of the
corresponding variables as in Table 4.

1.2.3 Writing a SPARQL Query

In a SPARQL query, partial graph patterns are expressed with Turtle-like syntax. Unknown elements
are written as variables, whose name begin with a letter ’?’. The partial graph pattern of Fig. 3
will be written as follows.

5

Table 4: The results retrieved by the partial graph pattern

subj2 label
http://id.ndl.go.jp/auth/ndlsh/01017771 セマンティックウェブ
http://id.ndl.go.jp/auth/ndlsh/00969901 バーチャルプライベートネットワーク
http://id.ndl.go.jp/auth/ndlsh/00865280 イントラネット

?subj1 rdfs:label "インターネット" ; # Internet
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .

The steps to search the graph with this pattern are:

1. If graph patterns use pre�xed names, map those pre�xes to URI by keyword PREFIX3,

2. put keyword SELECT followed by space separated variables to retrieve (similar to columns in
SQL),

3. then put keyword WHERE followed by patterns enclosed by {}.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?subj2 ?label
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
}

In this example, two variables ?subj2 ?label are listed after SELECT in order to get the values
shown in Table 4. By writing * instead of variables list, all values of the variables used in the graph
pattern will be retrieved4.

SELECT * WHERE {
...

For ASK, CONSTRUCT and DESCRIBE queries, SELECT clause is replaced by each corresponding
construct while PREFIX clause and WHERE clause parts are the same (See 2.8 for detail).

3Although some of following examples may omit PREFIX clause for simplicity, all prefixes must be mapped to
URIs by PREFIX.

4In these examples, first one has a new line before WHERE, while the second one does not. Since a new line
character is regarded as a white space in SPARQL syntax, it does not make any difference.

6

2 SPARQL RDF Query Language

The Web NDLA uses ARC2 library5 which supports SPARQL Query Language for RDF 1.06. This
chapter explains SPARQL query that can be used with the Web NDLA.

2.1 Basic Syntax

Most forms of SPARQL query contain a set of triple patterns called a basic graph pattern. These
patterns are expressed by Turtle-like syntax.

2.1.1 Triple Patterns

A triple pattern is like RDF triple except that each of the subject, predicate and object may be
a variable. A triple pattern consists of the following components:

• A term enclosed by <> is a URI7. It can be an absolute URI, or a relative URI combined with
BASE clause.

• A URI can be expressed as a pre�xed name in the form of prefix:localname. The pre�x
label must be associated with a URI by PREFIX clause.

• A value enclosed by "" or ’’ is a literal, with either an optional language tag (introduced by
@) or an optional datatype IRI / pre�xed name (introduced by ^^).

• If a pre�xed style name starts with _:, it is a blank node in a graph. A blank node can also
be expressed by [] form as in Turtle8.

• A variable is an alphanumeric string9 pre�xed by either ? or $. A variable name may contain
an under bar (_), but not a hyphen (-). Query variables in SPARQL queries have global scope.

A special single character 'a' may be used as an abbreviation of predicate rdf:type which relates
a subject to a class. A user may �nd it convenient because PREFIX clause for rdf: is not necessary
if there is no other term from that namespace.

The next is an example of abbreviation 'a' which relates the subject (variable) to foaf:Person
class. This query will �nd person entity resources (see 4.1) in the authority records.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT * WHERE {

?who a foaf:Person
}

Without using abbreviation 'a', the above query will be as follows.

5https://github.com/semsol/arc2
6http://www.w3.org/TR/rdf-sparql-query/
7It is actually an IRI in SPARQL, too. This document uses more familiar term URI in place of IRI.
8Blank nodes in graph patterns act as non-distinguished variables, not as references to specific blank nodes in the

data. Therefore, they will match even URIs or literals in RDF graph, though those values cannot be retrieved.
9The Web NDLA does not support non alphanumeric variable names, although SPARQL specification permits

them.

7

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT * WHERE {

?who rdf:type foaf:Person
}

A character # is a comment marker if presents outside literals and URIs. After the maker up to
the end of line will be a comment.

New line and TAB characters are treated as white spaces.

2.1.2 Datatype and Language Tag in Literal

A literal may be a plain literal, or may have a datatype (e.g. date, integer etc.) or a language tag.
A care should be taken because a plain literal and a typed literal or a language tagged literal are
treated as di�erent values even if their lexical forms (string parts) are the same.

• The Web NDLA does not use datatypes. For example, a record creation date is always in the
form of "2013-12-15" in theWeb NDLA, while it might be expressed as "2013-12-15"^^xsd:date
in some other datasets.

• The Web NDLA uses language tags only for the transcriptions of structured labels. For
example, the subject heading "図書館" (library) has two transcriptions "トショカン"@ja-Kana
and "Toshokan"@ja-Latn, so that users can distinguish Japanese-kana and Japanese-romaji
transcriptions.

2.1.3 Graph Patterns

A graph pattern is a set of triple patterns. Each triple pattern is delimited by a period (.)10.
There are abbreviated ways of writing some common triple pattern constructs, same as in Turtle:

The common subject can be abbreviated by ; so that the rest are written as predicate-object list.
The common predicate is abbreviated by , and the rest are just object list.

?subj rdfs:label ?label ;
skos:relatedMatch <http://id.ndl.go.jp/class/ndlc/DK341> ,

<http://id.ndl.go.jp/class/ndc9/694.5> .

The above example contains three triple patterns which share the common subject ?subj. Also,
the common predicate skos:relatedMatch is omitted in the last line with , at the end of previous
line. Without shortcut, those triple patterns will be written as follows.

?subj rdfs:label ?label .
?subj skos:relatedMatch <http://id.ndl.go.jp/class/ndlc/DK341> .
?subj skos:relatedMatch <http://id.ndl.go.jp/class/ndc9/694.5> .

10A period is just a delimiter, and not required at the end of a triple pattern (different from Turtle), hence it is not
necessary to place a period at the end of a graph pattern.

8

2.1.4 Filters

SPARQL provides FILTER to test or restrict the values. For example, the following query matches
records whose labels contain "夏目" (FILTER will be further explained in the section 2.6).

?uri rdfs:label ?label .
FILTER regex(?label, "夏目") # Natsume

2.2 Groups of Graph Patterns

SPARQL graph pattern matching is de�ned in terms of combining the results from matching basic
graph patterns.

A sequence of triple patterns (with optional �lters) comprises a single basic graph pattern. Any
other graph pattern terminates the basic graph pattern.

A set of one or more graph patterns delimited by {} is called group graph pattern. The WHERE
clause of a query consists of the keyword followed by one group graph pattern.

Group graph patterns can be nested.

WHERE {
?subj1 rdfs:label "インターネット" ; # Internet

skos:narrower ?subj2 .
{?subj2 rdfs:label ?label }

}

In the above example, the WHERE clause has one group graph pattern, within which there are one
basic graph pattern and one group graph pattern. The inner group graph pattern consists of one
basic graph pattern.

2.2.1 Graph Patterns and Filters

A FILTER restricts solutions over the whole group graph pattern in which the �lter appears. Within
the same group graph pattern, the �lter has the same scope regardless its position.

WHERE {
?subj1 rdfs:label "インターネット" ;

skos:narrower ?subj2 .
?subj2 rdfs:label ?label .
FILTER regex(?label, "ネット") # net

}

The above example has the same solutions as bellow.

WHERE {
FILTER regex(?label, "ネット")

9

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
}

2.2.2 Graph Patterns and Blank Node ID

Labels for blank nodes (blank node IDs) are scoped to the basic graph pattern. A label can be used
in only a single basic graph pattern in any query11. Therefore, the following example is valid:

WHERE {
?subj1 rdfs:label "インターネット" ;

skos:narrower _:s2 .
_:s2 rdfs:label ?label .

}

while the next one is an error.

WHERE {
?subj1 rdfs:label "インターネット" ;

skos:narrower _:s2 .
{_:s2 rdfs:label ?label }

}

In the second example, the inner {} divides the query into two basic graph patterns, which
cannot share the same blank node id (_:s2 in this case).

2.3 Optional Pattern Matching

In a query with basic graph patterns, all variables in the query must have matches to have a solution.
For example, in the next query, narrower terms of "インターネット" will not be retrieved unless
they have their related terms.

SELECT ?subj2 ?label ?subj3 ?rels
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label ;
skos:related ?subj3 .

?subj3 rdfs:label ?rels .
}

11Although blank nodes act like variables, their scope is different from that of variable which is global.

10

In order to make non-required variables optional, enclose the partial graph that contain those
variables as a group graph pattern, then concatenate it to the required pattern by OPTIONAL keyword.

SELECT ?subj2 ?label ?subj3 ?rels
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
OPTIONAL {

?subj2 skos:related ?subj3 .
?subj3 rdfs:label ?rels .

}
}

The above query will �nd all narrower terms of "インターネット", as well as the related terms
of them if they have any.

2.3.1 Multiple Optional Patterns

A query can have multiple OPTIONAL patterns.

pattern 1 OPTIONAL {pattern 2} OPTIONAL {pattern 3}

Those patterns are left-associative. The above one is the same as the next:

{pattern 1 OPTIONAL {pattern 2}} OPTIONAL {pattern 3}

2.3.2 OPTIONAL and FILTER

A FILTER can be applied to an optional pattern. The next example is a query that will �nd
the narrower terms of "インターネット" and also �nd their related terms which contain "情報"
(information).

SELECT ?subj2 ?label ?subj3 ?rels
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
OPTIONAL {

?subj2 skos:related ?subj3 .
?subj3 rdfs:label ?rels .
FILTER regex(?rels, "情報")

}
}

11

Note that the scope of a FILTER is the group graph pattern. If the FILTER keyword is placed
outside the OPTIONAL pattern as in the next example, it will a�ect the entire WHERE clause.

SELECT ?subj2 ?label ?subj3 ?rels
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
OPTIONAL {

?subj2 skos:related ?subj3 .
?subj3 rdfs:label ?rels .

}
FILTER regex(?rels, "情報")

}

Because this FILTER examines whether ?rels contains "情報" for all solutions, any solution
where the narrower term does not have related term (no binding for ?rels) will be excluded from
the results set.

2.4 UNION for Matching Alternatives

To �nd results that match any of alternative patterns, join group graph patterns by UNION keyword.
For example, the next query will �nd subject headings that have classi�cation code ND633

from National Diet Library Classi�cation (NDLC) or 547.483 from Japan Decimal Classi�cation 9th
edition (NDC9).

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
prefix xl: <http://www.w3.org/2008/05/skos-xl#>
prefix ndl: <http://ndl.go.jp/dcndl/terms/>
SELECT *
WHERE {

{
?subj

skos:relatedMatch <http://id.ndl.go.jp/class/ndlc/ND633> ;
rdfs:label ?dcndl .

} UNION {
?subj

skos:relatedMatch <http://id.ndl.go.jp/class/ndc9/547.483> ;
rdfs:label ?ndc9 .

}
}

12

2.5 RDF Dataset and Graph

A SPARQL query is executed against an RDF Dataset which represents a collection of graphs.
An RDF Dataset comprises one default graph, which does not have a name, and zero or more
named graphs, each of which is identi�ed by an URI.

A query involves any of graphs in a dataset. The graph that is used for matching a basic graph
pattern is the active graph. GRAPH keyword (see 2.5.1) speci�es the active graph. If it does not
present, the default graph is used as the active graph.

The dataset in the Web NDLA consists of two named graphs shown in Table 5.

Table 5: Graphs in Web NDLA dataset

data type graph URI
Subject Headings http://id.ndl.go.jp/auth/ndlsh
Name Authorities http://id.ndl.go.jp/auth/ndlna

Also, the merge of those two graphs is the default graph in the Web NDLA.

2.5.1 GRAPH Keyword

In a WHERE clause, a GRAPH followed by a graph URI will set the active graph. After the URI, place
the group graph pattern to search against this active graph.

SELECT * WHERE {
GRAPH <http://id.ndl.go.jp/auth/ndlna> {

?s rdfs:label "インターネット"
}

}

The above example will �nd "インターネット" in the Name Authority graph ("インターネット"
as a corporate name will match).

If a variable follows GRAPH keyword, the result will have the graph URI where the group graph
pattern has match.

SELECT * WHERE {
GRAPH ?g {

?s rdfs:label "インターネット"
}

}

The above query returns the result shown in Table 6, which tells that each of Subject Heading
and Name Authority has a record "インターネット".

With multiple GRAPH keywords, a query will be executed against each graph. The same variable
can be used across those graphs.

The next example will �nd the records that share the same labels in Subject Heading and Name
Authority by using the same variable ?label for both graphs.

13

Table 6: The search result of ”インターネット” with graph name as variable

g s
http://id.ndl.go.jp/auth/ndlsh http://id.ndl.go.jp/auth/ndlsh/00841024
http://id.ndl.go.jp/auth/ndlna http://id.ndl.go.jp/auth/ndlna/001144835

SELECT * WHERE {
GRAPH <http://id.ndl.go.jp/auth/ndlsh> {

?sh rdfs:label ?label
}
GRAPH <http://id.ndl.go.jp/auth/ndlna> {

?na rdfs:label ?label
}

}

2.5.2 FROM Clause

A clause FROM <graph URI> before WHERE clause indicates the graph to be used to form the default
graph. FROM NAMED <graph URI> will introduce that graph as a named graph. Those keywords can
be used multiple times (i.e. the query will be executed against multiple graphs).

In the Web NDLA, FROM clause acts to restrict the target graph12. The next example will �nd "
インターネット" in the Name Authority, and have the same results as the query with GRAPH keyword.

SELECT *
FROM <http://id.ndl.go.jp/auth/ndlna>
WHERE {

?s rdfs:label "インターネット"
}

2.6 Restricting Values with FILTER

FILTER restricts solutions that match the graph pattern, by excluding solutions where any FILTER
expression evaluates to FALSE.

?book ex:price ?price .
FILTER (?price < 2000)

In the above example, only solutions whose ?price value is less than 2000 will be returned,
others being excluded from the matching sets.

12Some services introduce external dataset by FROM, although the Web NDLA does not. FROM and FROM
NAMED behave identically in the Web NDLA: specified graph will be incorporated to both default graph and named
graph.

14

2.6.1 Comparison and Logical Operators

Like many programming languages, FILTER expression can have comparison and logical operators
shown in Tables 7 and 8 respectively. An expression has to be enclosed by ().

Table 7: SPARQL Comparison Operators

Operator TRUE condition
A = B A is equal to B
A != B A is not equal to B
A > B A is greater than B
A < B A is less than B
A >= B A is greater than or equal to B
A <= B A is less than or equal to B

Table 8: SPARQL Logical Operators

Operator TRUE condition
A || B Either A or B is TRUE (OR)
A && B Both A and B are TRUE (AND)
! A Not A (NOT)

Expressions are evaluated based on the data types of A and B. Suppose A is 10 and B is 5, the
expression A > B evaluates to TRUE if those are numeric values, and to FALSE if string values. A
and B must have the same types to be compared. In the Web NDLA, all literal values are strings (no
data type), however, they are converted to numbers automatically if both A and B can be treated
as numerical values13.

For numerical values, arithmetic operators can be applied. The next example restricts the
solutions to have 10 or more di�erence between max and min values.

?what ex:height ?max ；
ex:low ?min .

FILTER (?max - 10 >= ?min)

2.6.2 Test Functions

Functions in Table 9 are provided to test values, e.g. whether they are literals, blank nodes etc.
The combination of OPTIONAL pattern and negation of bound() can be used to �nd solutions

that do NOT have a value of particular property. The next example will �nd any living person (who
has birth date but does not have death date).

13In general, use accessors such as STR() in 2.6.3 to align data types when operands have different types.

15

Table 9: SPARQL Test Functions

Function TRUE condition
bound(A) A is bound to a value
isIRI(A) A is an IRI
isURI(A) A is a URI
isBLANK(A) A is a blank node
isLITERAL(A) A is a literal

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rda: <http://RDVocab.info/ElementsGr2/>
SELECT * WHERE {

?who a foaf:Person; foaf:name ?name ;
rda:dateOfBirth ?bdate .

OPTIONAL {
?who rda:dateOfDeath ?ddate.

}
FILTER (!bound(?ddate))

}

Note that dateOfDeath has to be OPTIONAL. Otherwise, the graph pattern requires ?ddate while
FILTER excludes results that have matching ?ddate, resulting empty solution set14.

2.6.3 Accessors

Operators in Table 10 are accessors to obtain values other than truth value.

Table 10: SPARQL Accessors

Operator Return Value
str(A) the lexical form of A (simple string)
lang(A) language tag value of A
datatype(A) datatype URI of A

For example, with lang() accessor, a user can retrieve Romaji transcription of headings that
match a pattern.

PREFIX xl: <http://www.w3.org/2008/05/skos-xl#>
PREFIX ndl: <http://ndl.go.jp/dcndl/terms/>
SELECT * WHERE {

?uri xl:prefLabel [ndl:transcription ?yomi] ;

14SPARQL 1.1 provides more intuitive negation, e.g. FILTER NOT EXISTS ?who rda:dateOfDeath ?ddate.

16

#any graph pattern
FILTER (lang(?yomi) = "ja-Latn")

}

2.6.4 Regular Expressions

The regular expression, introduced by regex() function, is a method to evaluate a string with
�exible pattern. Partial matching to a string is also executed by a regular expression function.

The Web NDLA supports regular expression notations in Table 1115.

Table 11: The Web NDLA Regular Expression

Notation Functionality
. matches any single character
* matches zero or more times of the pattern immediately before
+ matches one or more times of the pattern immediately before
? matches zero or one of the pattern immediately before
^ matches the head of a string
$ matches the tail of a string
() grouping the enclosed patterns
| choice of a pattern in a group (OR)
{} specifies the number of repetition of the pattern immediately before
[...] character class (set or range of characters)
[^...] negation of the character class

The regular expression function is used in a form of regex(text, pattern). For partial match,
the pattern is the desired partial string.

For example, following query will �nd headings that contain "図書館".

SELECT * WHERE {
?uri rdfs:label ?label .
FILTER regex(?label, "図書館")

}

The next query will �nd headings that consist of three capital letters.

SELECT * WHERE {
?uri rdfs:label ?label .
FILTER regex(?label, "^[A-Z]{3}$")

}

15SPARQL Regular Expression follows the definition in XQuery/XPath specification, however, the Web NDLA
does not support escape and meta characters with backslash at this moment.

17

The regex() function may have a �ag as the third argument that controls matching behavior.
The Web NDLA supports "i" �ag that makes the search case-insensitive. In the next query, ?label
will match either "internet", "Internet" or "INTERNET".

SELECT * WHERE {
?uri rdfs:label ?label .
FILTER regex(?label, "internet", "i")

}

A FILTER can have multiple expressions combined by a logical operator. The next query will
�nd headings that contain either "インターネット" or "Internet".

SELECT * WHERE {
?uri rdfs:label ?label .
FILTER (regex(?label, "インターネット") || regex(?label, "Internet"))

}

Note concatenation of two expressions by && is equivalent to writing two FILTER clauses.

2.7 Solution Sequences and Modifiers

Sequence modi�ers canbe used to make solutions an ordered sequence or to restrict numbers of
solutions.

2.7.1 LIMIT and OFFSET

LIMIT clause after WHERE clause restricts the maximum number of solutions to be returned. OFFSET
clause controls the starting solution to be returned in whole sequence.

The next example will return the �rst 10 headings.

SELECT * WHERE {
?uri rdfs:label ?label

} LIMIT 10

The next example will return headings from 6 to 10 (OFFSET speci�es how many solutions to be
skipped from the top). The order of LIMIT and OFFSET clauses is not signi�cant.

SELECT * WHERE {
?uri rdfs:label ?label

} LIMIT 10 OFFSET 5

At this moment, the Web NDLA is con�gured to return at most 100 results. Therefore, the
maximum number of results per request is 100, even if LIMIT clause tells more. Please use OFFSET
clause in order to get results after 101.

18

SELECT * WHERE {
?uri rdfs:label ?label

} OFFSET 100

2.7.2 Sorting

ORDER BY keyword followed by space separated sort key variables establishes the order of the solution
sequence. DESC() / ASC() modi�ers indicate the enclosed variable is a descending / ascending key,
respectively. Without enclosing modi�er, a variable is treated as an ascending key.

SELECT * WHERE {
?uri rdfs:label ?label ;

dct:modified ?moddate .
} ORDER BY ?moddate

Order modi�ers can be combined with LIMIT and OFFSET clause to retrieve the sorted slice of
the solutions. In this case, write ORDER BY �rst, then LIMIT and OFFSET.

2.7.3 Eliminating Duplications

In some graph patterns, it is possible that some solutions share the same set of bindings from
variables to values. DISTINCT modi�er after SELECT ensures that those duplications are eliminated
from the solution set.

SELECT DISTINCT ?type WHERE {
?s a ?type .

}

REDUCED modi�er also eliminates duplications, but does not guarantee uniqueness. While both
modi�ers generate the same solution set in most cases, REDUCED would return the results faster for
large data sets, since the heavy computational burden required by complete elimination would be
obviated.

2.7.4 Aggregates

Aggregates such as grouping the solutions and counting the number of results are introduced in
SPARQL 1.1. Although the Web NDLA (ARC2 library) implements SPARQL 1.0, there are some
aggregate functions available.

In order to count the number of the results, use set function COUNT() with the target variable as
its argument, and assign the counted number to a new variable by AS keyword, in SELECT clause.
For example, the next query will �nd the number of authority records of people who were born in
1960, in the Web NDLA.

19

SELECT (COUNT(?who) AS ?howmany) WHERE {
?who rda:dateOfBirth "1960" .

}

GROUP BY keyword followed by variables, after WHERE clause, divides results into groups. Then
the aggregate value is calculated for each group. The next example will �nd the year-by-year number
of authority records of people who were born in 1900 or later.

SELECT ?byear (COUNT(?who) AS ?howmany) WHERE {
?who rda:dateOfBirth ?byear .
FILTER (?byear >= 1900)

} GROUP BY ?byear
ORDER BY ?byear

Set functions for aggregates are MAX(), MIN(), AVG() and SUM() as well as COUNT() (AVG() and
SUM() are applicable only for numerical values). The next example will �nd the latest and the oldest
year of birth in authority records of personal name.

SELECT (MIN(?byear) AS ?past) (MAX(?byear) AS ?recent) WHERE {
?who rdf:dateOfBirth ?byear .

}

2.8 Query Forms and Results

SPARQL has four query forms: SELECT, ASK, CONSTRUCT and DESCRIBE.

2.8.1 SELECT

To �nd the values that match the pattern, use SELECT query.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?subj2 ?label
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
}

With the above SELECT query, the Web NDLA will return the following results (for XML format).

20

<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
<variable name="subj2"/>
<variable name="label"/>

</head>
<results>
<result>
<binding name="subj2">

<uri>http://id.ndl.go.jp/auth/ndlsh/00969901</uri>
</binding>
<binding name="label">

<literal>バーチャルプライベートネットワーク</literal>
</binding>

</result>
<result>
<binding name="subj2">

<uri>http://id.ndl.go.jp/auth/ndlsh/00865280</uri>
</binding>
<binding name="label">

<literal>イントラネット</literal>
</binding>

</result>
<result>
<binding name="subj2">

<uri>http://id.ndl.go.jp/auth/ndlsh/01017771</uri>
</binding>
<binding name="label">

<literal>セマンティックウェブ</literal>
</binding>

</result>
</results>

</sparql>

The <head> element enumerates the variable names in the results set, and the <results> element
contains <result> elements for each matching variable set. See 3.1 for the detail of the result format.

2.8.2 ASK

To determine whether there are any partial graphs that match the pattern (without retrieving the
values), use ASK query. Because this query ignores variable values, the keyword is immediately
followed by the WHERE clause.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
ASK WHERE {

21

?subj1 rdfs:label "インターネット"
}

With the above ASK query, the Web NDLA will return the following results (for XML format).

<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head></head>
<boolean>true</boolean>

</sparql>

If no matching partial graph is found, the content of <boolean> is false.

2.8.3 CONSTRUCT

The matching variable values can be used to construct another RDF graph. Write the pattern of
the new graph with similar syntax, put it in {} after the keyword CONSTRUCT, then place the WHERE
clause.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX ex: <http://example.org/terms#>
CONSTRUCT {

?subj1 ex:下位語 ?label . # 下位語 means narrower term
}
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
}

With the above CONSTRUCT query, the Web NDLA will return the following graph (for Turtle
format).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ns0: <http://example.org/terms#> .

<http://id.ndl.go.jp/auth/ndlsh/00841024>
ns0:下位語 "バーチャルプライベートネットワーク" , # virtual private network

"イントラネット" , # Intranet
"セマンティックウェブ" . # Semantic Web

Note the pre�xes in the returned Turtle might be di�erent from those speci�ed in the query.
If output parameter is xml, the graph is returned in RDF/XML format.

22

2.8.4 DESCRIBE

With DESCRIBE query, a user can retrieve an RDF graph which is about the resources (variable
values) that match the condition. In the Web NDLA, this will be a "description graph" that consists
of triples whose subjects are the value URIs, plus triples connected to them via blank nodes.

DESCRIBE <http://id.ndl.go.jp/auth/ndlsh/00841024>

With the above DESCRIBE query, the Web NDLA will return the same RDF graph as to be
retrieved from the URI with su�x .ttl or .rdf.

A description graph can be obtained for the resources that match a graph pattern in WHERE clause.
If there are multiple matches or multiple variables are speci�ed, the merge of the "description graphs"
will be returned.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
DESCRIBE ?subj2
WHERE {

?subj1 rdfs:label "インターネット" ;
skos:narrower ?subj2 .

?subj2 rdfs:label ?label .
}

The "description graph" will be empty if the value of the variable is a literal.

23

3 API Parameters and Result Formats

An API request is to be sent to the following URI, with URL encoded query string as query
parameter value and result format as output parameter value, as shown in 1.1.2.

http://id.ndl.go.jp/auth/ndla

The variables binding list and TRUTH value, as the result of SELECT and ASK query respectively,
will be returned with XML or JSON result format according to output parameter value.

3.1 XML Result Format

When the output parameter value is xml, the result set is returned in SPARQL Query Results XML
Format16.

This format is, as shown in the example in 2.8.1, an XML document in namespace http://www.w3.org/2005/sparql-results#
whose root sparql element has head and results (boolean for ASK query) elements.

The head element has variable elements in query order, where name attribute is the name of
each variable. The head element is empty for ASK query.

<head>
<variable name="subj2"/>
<variable name="label"/>

</head>

The results element contains zero or more result elements which have binding elements
for each bound variable. A binding element has a name attribute corresponding to the name of
variable, and has one child element <uri>, <literal> or <bnode> (depending on the value type)
whose content is the value of the variable.

If the value is literal and has language tag, <literal> has xml:lang attribute. If it is a typed
literal, the element has datatype attribute whose value is the datatype URI.

<results>
<result>
<binding name="subj2">

<uri>http://id.ndl.go.jp/auth/ndlsh/00969901</uri>
</binding>
<binding name="label">

<literal>バーチャルプライベートネットワーク</literal>
</binding>

</result>
...

</results>

16http://www.w3.org/TR/rdf-sparql-XMLres/

24

For ASK query, there is a <boolean> element instead of <results>, whose content is true or
false, as shown in the example in 2.8.2.

3.2 JSON Result Format

When the output parameter value is json, the result set is returned in SPARQL 1.1 Query Results
JSON Format17.

This is a JSON document whose top most object has head and results (boolean for ASK query)
property. The result in JSON format for the query in 2.8.1 will be as follows.

{
"head": {
"vars": [
"subj2",
"label"

]
},
"results": {
"bindings": [
{

"subj2": {
"type": "uri",
"value": "http://id.ndl.go.jp/auth/ndlsh/00969901"

},
"label": {
"type": "literal",
"value": "\u30d0\u30fc\u30c1\u30e3\u30eb\u30d7\u30e9..."

}
},
....

]
}

}

The head property value is an object which has a vars property, whose value is an array of
variable names.

The results property is an object which has a bindings property, whose value is an array of
objects of result sets, where bound variable names are properties. Each property value is an object,
which has a type property to tell whether the value is URI, blank node or literal, and a value
property to show the value.

Note that value property value will be escaped as \u + Unicode number for non-ASCII charac-
ters, as shown in the above example.

17http://www.w3.org/TR/sparql11-results-json/

25

4 RDF Graph of the Authority Records and Applied Exam-
ples

This chapter explains the model (graph structure) of the authority records in the Web NDLA, and
presents some examples to apply SPARQL constructs discussed in the previous chapters against the
graph.

4.1 Authority Records of Personal Name, Family Name and Corporate
Name

The authority record resource is distinguished from the entity resource that corresponds to the real
world thing (person etc.) in the graph of personal name, family name and corporate name.

An authority record has such properties as preferred label, alternative label, source and related
link, to name the few. Preferred label and alternative label have structures via blank nodes in order
to provide literal forms and yomi (transcriptions) together.

An entity resource describes such real world attributes as birth year of a person, establish year
or history of a corporate. An authority record resource and its corresponding entity resource are
related by foaf:primaryTopic (Figure 4).

4.1.1 To Find Birth Year, Preferred Label and Kana Transcription of a Person

Provided that a person's name is known, compose a SELECT query where the name is the object of
foaf:name and other values in question are variables.

PREFIX rda: <http://RDVocab.info/ElementsGr2/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xl: <http://www.w3.org/2008/05/skos-xl#>
PREFIX ndl: <http://ndl.go.jp/dcndl/terms/>
SELECT * WHERE {

?auth
foaf:primaryTopic ?entity ;
xl:prefLabel [

xl:literalForm ?preflabel ;
ndl:transcription ?yomi] .

?entity
rda:dateOfBirth ?birth ;
rda:dateOfDeath ?death ;
foaf:name "夏目漱石". # Natsume, Soseki

FILTER (lang(?yomi) = "ja-Kana")
}

Note that preferred label and rdfs:label value are normalized in the form of family name, �rst
name and birth-death year, e.g. "夏目, 漱石, 1867-1916". The above example uses foaf:name of the
entity resource to search with a common name format such as concatenated name (for Japanese) or
�rst name then last name form.

26

Figure 4: Name authority graph of ”夏目漱石”. A node .../ndlna/00054222 in the left of the figure represents
the authority record, and .../entity/00054222 at the top represents the entity resource.

27

Since the preferred label has both Kana and Romaji yomi (ndl:transcription), use FILTER to
restrict the language tag.

4.1.2 To Search Person Born in 11th Century, Find VIAF Link and Sort by Birth
Year

To �nd person born in 11th century, express the condition "born between 1001 and 1100" with the
logical operator in the FILTER clause18. An authority record links to VIAF with skos:exactMatch.
Variable ?birth is used to sort the result in addition to FILTER expressions.

PREFIX rda: <http://RDVocab.info/ElementsGr2/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT * WHERE {

?auth
foaf:primaryTopic [

rda:dateOfBirth ?birth ;
foaf:name ?name] ;

skos:exactMatch ?viaf .
FILTER (xsd:integer(?birth) >= 1001 && xsd:integer(?birth) <= 1100)

} ORDER BY ?birth

Note that the Web NDLA does not allow more than 100 results to be retrieved for a single
request. Use OFFSET clause repeatedly to get more than 100 results (See 2.7.1).

4.2 Authority Records of Geographical Name, Uniform Title, Subject
Heading and Subject Subdivision

These authority records do not have corresponding entity resources, hence they have �at structure
graphs (though preferred label and alternative label have their substructures to provide literal form
and transcriptions together). Subject headings have more properties than name authorities in order
to describe broader, narrower, related terms or classi�cations (Figure 5).

4.2.1 To Find Broader or Narrower Terms of Subject Heading

Since subject headings are not normalized as name authorities, simply use rdfs:label as the prop-
erty of the known heading, and let broader or narrower terms be variables. The next example will
�nd the broader term of "インターネット".

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE {

18Since the values of rda:dateOfBirth are plain literal, those must be converted to numerical e.g. xsd:integer in
order to proper comparison. While the Web NDLA SPARQL 1.0 endpoint can handle this FILTER without such
casting functions, SPARQL 1.1 endpoint returns empty result without them.

28

Figure 5: RDF graph of subject heading ”インターネット”. Some narrower and related terms are omitted
for simplicity.

29

?subj
rdfs:label "インターネット" ;
skos:broader ?broader .

?broader rdfs:label ?label .
}

4.2.2 To Find Subject Headings with Some Classifications

In order to �nd subject headings that have classi�cation of NDLC "DM225" which is identi�ed by
a URI, construct a query with that URI as the object of skos:relatedMatch.

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE {

?subj
skos:relatedMatch <http://id.ndl.go.jp/class/ndlc/DM225> ;
rdfs:label ?label .

}

To �nd subject headings classi�ed as both NDLC "DK341" and NDC9 "694.5", let the graph
pattern have two objects of skos:relatedMatch (NDC9 is also identi�ed by a URI, with di�erent
base URI).

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE {

?subj
skos:relatedMatch <http://id.ndl.go.jp/class/ndlc/DK341> ,

<http://id.ndl.go.jp/class/ndc9/694.5> ;
rdfs:label ?label .

}

30

5 SPARQL 1.1

A SPARQL 1.1 endpoint (based on Virtuoso) was introduced in FY2017 as a trial viersion. The
existing SPARQL 1.0 endpoint (explained in the previous sections) is still available, too.

5.1 Request URI and parameters

The endpoint URI of the new service is as follows:

http://id.ndl.go.jp/auth/ndla/sparql

It uses two parameters shown in table 12.

Table 12: Web NDLA API parameters

parametaer value
query SPARQL 1.1 query (should be URL encoded)
format result format (xml | json | turtle | csv | html)

• In case of SELECT and ASK query, the results set for xml, json, csv will be in SPARQL
Query Results Formats as in each speci�cation. The results set for turtle will be RDF graph
serialized by Virtuoso.

• In case of DESCRIBE, CONSTRUCT query, the results set is RDF/XML for xml, JSON-LD Ex-
panded Form19 for json, and CSV (each line corresponds to a triple) for csv. Normal Turtle
will be returned for turtle.

The maximum number of results per request is 1000.

5.2 New Functionalities of SPARQL 1.1, and Sample Queries

This section explains some major functionalities introdued by SPARQL 1.1. See the SPARQL 1.1
Query Language speci�cation20 (SPARQL 1.1 spec) for details.

5.2.1 Negation

Filtering of query solutions is done within a FILTER expression using NOT EXISTS (SPARQL 1.1
spec §8)。

The following is an example to query the authority records which do not have transcriptions of
the preferred label.

19All URIs, including properties, are expanded to full absolute form
20http://www.w3.org/TR/sparql11-query/

31

PREFIX xl: <http://www.w3.org/2008/05/skos-xl#>
PREFIX ndl: <http://ndl.go.jp/dcndl/terms/>
SELECT * WHERE {

?id xl:prefLabel ?xl .
?xl xl:literalForm ?label .
FILTER NOT EXISTS {?xl ndl:transcription ?yomi }

} LIMIT 10

5.2.2 Property Paths

Property paths allow for more concise expressions for some SPARQL basic graph patterns (SPARQL
1.1 spec §9).

The following is an example of the * operator to query all 'narrower' subject headings of "図書
館".

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?sub ?label WHERE {

?top rdfs:label "図書館" ;
skos:narrower* ?sub .

?sub rdfs:label ?label .
}

5.2.3 Assignment

The BIND form allows a value to be assigned to a variable from a basic graph pattern or property
path expression (SPARQL 1.1 spec §10).

The follwing example selects the narrower subject headings of "図書館" and their classi�cations,
extracts classi�cation numbers from the URIs, then assigns a variable (?ndc) to them and sort the
results by NDC order using the variable.

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?sub ?label ?ndc WHERE {

?top rdfs:label "図書館" ;
skos:narrower* ?sub .

?sub rdfs:label ?label ;
skos:relatedMatch ?rel.

FILTER(regex(?rel, "^http://id.ndl.go.jp/class/ndc9/"))
BIND (strafter(str(?rel), "ndc9/") as ?ndc)

} ORDER BY ?ndc

32

5.2.4 Aggregates

Aggregates apply expressions over groups of solutions (SPARQL 1.1 spec§11). The GROUP BY and
some set functions e.g. COUNT() are already available in the existing ARC2 endpoint (see §2.7.4).
The combination of the Aggregates and Assignment makes more �exible queries possible.

The following example lists the number of NDC classi�cations assigned to subject headings,
aggregated by the NDC Classes (top level categories).

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?ndc (count(?id) as ?count) WHERE {

?id skos:relatedMatch ?rel.
FILTER(regex(?rel, "^http://id.ndl.go.jp/class/ndc9/"))
BIND (substr(str(?rel), 32, 1) as ?ndc)

} GROUP BY ?ndc ORDER BY ?ndc

5.2.5 Subqueries

Subqueries are a way to embed SPARQL queries within other queries, normally to achieve results
which cannot otherwise be achieved (SPARQL 1.1 spec §12).

The following example queries the narrower subject headings of "図書館", counts further narrower
headings of each result, and returns them with corresponding labels.

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?sub ?label ?count WHERE {

?top rdfs:label "図書館" ;
skos:narrower ?sub .

?sub rdfs:label ?label .
{

SELECT ?sub (count(?ssub) as ?count) WHERE{
?sub skos:narrower ?ssub .

}
}

}

33

5.3 The Differences between SPARQL 1.1 endpoint and exsiting ARC2
(1.0 endpoint)

Due to the limitation of Virtuoso, language tags of transcriptions are all lower-cased. While the
query gateway maps the normal lang tags to lower-cased ones in query, the returned results sets will
contain lower-cased language tags.

For the following query:

PREFIX xl: <http://www.w3.org/2008/05/skos-xl#>
PREFIX ndl: <http://ndl.go.jp/dcndl/terms/>
SELECT ?yomi WHERE {

?id xl:prefLabel [
xl:literalForm "蔬菜" ;
ndl:transcription ?yomi]

} LIMIT 1

in the existing ARC2 endpoint, the returned value of bindings in JSON result format is:

{
"yomi": {
"type": "literal",
"value": "Sosai",
"xml:lang": "ja-Latn"

}
}

while it will be as follows in SPARQL 1.1:

{
"yomi": {
"type": "literal",
"value": "Sosai",
"xml:lang": "ja-latn"

}
}

Notice the di�erence of xml:lang values.

34

6 Revision History

• 2018-03-31：Added§5 according to the SPARQL 1.1 endpoint test service. Also minor changes
in the description of the SPARQL 1.1 in the document.

• 2023-03-31：A correction in query example in the Test Functions (2.6.2). Added note on typed
literal comparison in the Applied Examples (4.1.2).

35

